Freshwater Resilience by Design:

Prof. Casey Brown University of Massachusetts Amherst

what future to plan for?

from S. Hallegatte

The Meteo-France model, from IPCC

Climate projections disagree

from S. Hallegatte

The Meteo-France and the Australian model, from IPCC

... and we have a lot of models...

from S. Hallegatte

-50 -30 -20 -15 -10 -5 0 5 10 15 20 30 50%

... and future climates depend on future climate policies and socio-economic trends...

resilience

"The **ability** of a system to absorb impacts from a shock or disturbance and then recover to a state of continued functionality"

"The **ability** of a system to withstand and recover from shocks and disturbances and to maintain functionality in the face of chronic stressors"

"The **ability** to thrive under acute shocks and chronic stresses – to respond and adapt to change and to transform when conditions require it"

resilience

"The ability of a system to absorb impacts from a shock or disturbance and then recover to a state of continued functionality"

"The **ability** of a system to withstand and recover from **shocks** and **disturbances** and to maintain functionality in the face of chronic stressors"

"The **ability** to thrive under acute **shocks** and chronic **stresses** – to respond and adapt to change and to transform when conditions require it"

resilience

"The ability of a system to absorb impacts from a shock or disturbance and then recover to a state of continued functionality"

"The ability of a system to withstand and recover from shocks and disturbances and to maintain functionality in the face of chronic stressors"

"The ability to thrive under acute shocks and chronic stresses – to respond and adapt to change and to transform when conditions require it"

performance-based resilience

Perform well over a wide range of futures

Recover after failure

Transform to new configuration if needed

Resilience by DesignCurrent PracticeOur Approach

Single objective	the risk in current practice	Multiple objectives
	Focus on Cost Minimization misses potential resilience benefits, creating fragile systems	 Resilience of: Economic/Service objectives Social/Equity objectives Environmental objectives
Single future		Multiple futures
	Overconfidence in our expected future leads to	Future Climates Population Growth and Demographic Change Economic Growth and Change Changing Societal Preferences
Single project		Multiple projects
	Considering the best design for a single project misses opportunities for integration and diversification	Link urban investment program and policies with investments and policies in the connected river basin and the evaluation of benefits and costs in each location

Resilience by Design

<section-header>

Data Analytics discovers optimal resilience investment portfolio

Collaborative Modeling

4 Design Water Security and Resilience Plan Implementation

Resilience by Design

Data Analytics discovers optimal resilience investment portfolio

Collaborative Modeling

International Upper Great Lake Study

IJC Climate Change Guidance Framework

To provide clear guidance for addressing climate change in IJC policy and operations using the best available science and stakeholder inputs

California Department of Water Resources Vulnerability Study

A Roadmap to Water Security and Resilience

Nepal - Upper Arun Hydroelectric Plant

Colorado Springs Public Utilities

San Francisco Water

SF Water Long Term Vulnerability Assessment and Adaptation Planning

The Opportunity: Cities, World Bank and Water Resilience:

- 65% of Resilient Cities face water related risks
- World Bank water investment portfolio of \$6B
- Can we leverage WB investing and Resilience Strategies to *transform water infrastructure*?

Mexico City:

Parched and Sinking, Faces a Water Crisis (NY Times, 7 Feb 2017)

The second

OpenAGUA – Cloud, Collaborative, decision system

Optimization Model

> **INVESTMENT PORTFOLIOS:** for ecological, social (equity), and economic resilience of water in VdMX

Evaluating Resilience of Alternative Designs

Resilience through Connectivity

CWS Structure with Option7

Conclusion

- Freshwater Resilience requires investment done in new ways
- There's a significant and important opportunity to re-engineer water infrastructure
- However, if we evaluate designs as we always have, we'll choose the designs we always have

Thank You. Questions: casey@umass.edu

